| 1)

SYNCHRONICER AS A SERVICE




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Contents

Management summary

Formats

Service catalogue

Authorization

Data model

Calling Synchronicer Services
SOAP services
SOAPAction

Request document structure

Response document structure

Example request document

Example response document

HTTP POST XML - response: XML

Request document structure

Response document structure

Example request document
Example response document

HTTP GET - response: XML

Response document structure

Example GET request

Example response document

HTTP GET - response: JSON

Response document structure

Example GET request

Example response structure

Common considerations for all service interfaces

Security/authentication when calling Synchronicer services

O VW YV YV VOV YV W W W 0 N N N N N o o0 1t 1 it i1t 1t » b W W W

—_—

Fair usage/service load

Page 1 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

The helloSynchronicer test service 10
Resending requests that update data 10
Examples 11
Calling secured Synchronicer services 14
Standard authorization 14
Example login response - XML 15
Example login response - JSON 15
Calling the login service - basic authentication 15
Calling the login service - request parameters 17
Calling the login service - authorization attributes 17
Calling a secured service 18
Alternative method: Calling secured services without the authorization token 19
Synchronicer data model 21
ER diagram for the data model 21
Registration 21
Tour 22
Destination 22
registrationltem 22
registrationTable 23
Retrieving the configuration 24
Other concepts 24
Page 2 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Management summary

As a part of our Synchronicer product, we offer a flexible web service integration making it easier for our
customers to access data whenever necessary to support relevant and critical business demands.

Many businesses rely on not only one IT system; they rely on multiple IT systems, and they are dependent
on the ability of these systems to interact with each other. In addition, the integration process is often
time consuming and depends largely upon technical skills and how well the interface is described.

Working with Synchronicer web services should reduce the integration process and present future
business improvements by displaying the data (web services) available to our customers.

Specify user/password as: 4 Synchronicer )
or

| Login service
Returns XML or JSON document containing
authorization token

Client

POST/GET to secured service
—add HTTP header:
Authorization bearer [TOKEN]

Secured Synchronicer
| services

Returns response according to service type

Formats

In order to secure a flexible integration, Synchronicer provides four different interfaces for calling external
services.

SOAP based services

HTTP POST XML - service response: XML
HTTP GET - service response: XML

HTTP GET - service response: JSON

HwnN =

Find further specifications and details for each interface in the section Calling Synchronicer Services.

Service catalogue

To make the integration process easier, both when it comes to understand how data in Synchronicer may
support the business and to the technical staff when deploying business demands, we provide a full
service catalogue. The catalogue is easy to access on the following URLs:

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

Page 3 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

e Production: https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

Authorization

Data security and data protection are important factors when integrating with other IT-systems. For this
reason, we secure all of our Synchronicer services using SSL.

The standard (and recommended) way to specify the security information is to use the special login
service. The service issues a token, which you can add as an authorization bearer header on subsequent
calls to services.

Data model

When using our web services, understanding the data model is important when it comes to knowing
how to benefit from all the services Synchronicer provides. Find further information about the data
model by reading the section ‘Synchronicer data model'.

Page 4 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Calling Synchronicer Services

This section describes the four different interfaces provided by Synchronicer for calling external services:

SOAP based services

HTTP POST XML - service response: XML
HTTP GET - service response: XML

HTTP GET - service response: JSON

el e

You can find an overview of all the current services with reference to their formal descriptions here:

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
e Production: https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

SOAP services

All Synchronicer services are provided as SOAP 1.1 services. The formal service description is provided as
a WSDL.

e  WSDL location (test environment):
https://tstxml.synchronicer.dk/express/res/res synch/Schemas/SynchronicerSoapAPIServicesTst.
wsdl

e WSDL location (production environment):
https://xml.synchronicer.dk/express/res/res synch/Schemas/SynchronicerSoapAPIServices.wsdl

These locations will always point to the current WSDL and the current schemas.

Note that the WSDL imports a number of schemas that defines the request and response documents.
This means that if you want to save the WSDL locally, then you also need to download all the imported
schemas.

The SOAP services are provided on these URLs:

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer/services/apisoap
e Production: https://xml.synchronicer.dk/express/site/synchronicer/services/apisoap

SOAPAction
For all services, the name of the service is also the value of the SOAPAction.

Request document structure
The top element of all request documents has the service name. For simple documents, add all
information as attributes of the top element.

Response document structure
The top element of all response documents is the service name followed by “response”.
The top element contains an attribute “status”.

Page 5 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://tstxml.synchronicer.dk/express/res/res_synch/Schemas/SynchronicerSoapAPIServicesTst.wsdl
https://tstxml.synchronicer.dk/express/res/res_synch/Schemas/SynchronicerSoapAPIServicesTst.wsdl
https://xml.synchronicer.dk/express/res/res_synch/Schemas/SynchronicerSoapAPIServices.wsdl

Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

If the status value is “success” and the service can return additional information, then the top element will
scope a responseData element containing the service response.

If the status value is not “success”, then the top element will scope a message element that can scope a
number of message elements - each describing an error cause.

Example request document

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:syn="http://www.synchronicer.dk">
<soapenv:Header/>
<soapenv:Body>
<syn:helloSynchronicer helloParm1="First" helloParm2="Second"/>
</soapenv:Body>
</soapenv:Envelope>

Example response document

<SOAP-ENV:Envelope xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<helloSynchronicerResponse status="success" xmlIns="http://www.synchronicer.dk">
<responseData helloParm1="First" helloParm2="Second" user="APISDUDV"/>
</helloSynchronicerResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

HTTP POST XML - response: XML
You call these services by using an HTTP POST request. The request body must be an XML document. A
W3C XML schema describes the request and response documents for each service.

The name of the schema for a service is [servicename].xsd — view examples below:

e Test: http://tstxml.synchronicer.dk/express/res/res_synch/Schemas/[servicename].xsd

o Example: http://tstxml.synchronicer.dk/express/res/res synch/Schemas/helloSynchronicer.xsd
e Production: https://xml.synchronicer.dk/express/res/res_synch/Schemas/[servicename].xsd

e Example: https://xml.synchronicer.dk/express/res/res synch/Schemas/helloSynchronicer.xsd

The XML services are provided on the following URLs:

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer/services/apixml
e Production: https://xml.synchronicer.dk/express/site/synchronicer/services/apixml

Page 6 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



http://tstxml.synchronicer.dk/express/res/res_synch/Schemas/helloSynchronicer.xsd
https://xml.synchronicer.dk/express/res/res_synch/Schemas/helloSynchronicer.xsd

Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Request document structure
The top element of all request documents has the service name. For simple documents, add all
information as attributes of the top element.

Response document structure
The top element of all response documents is the service name followed by “response”.
The top element contains an attribute “status”.

If the status value is “success”, and the service can return additional information, then the top element
will scope a responseData element containing the service response.

If the status value is not “success”, the top element will scope a message element that can scope a
number of message elements — each describing an error cause.

Example request document

<syn:helloSynchronicer helloParm1="First" helloParm2="Second"
xmlns:syn="http://www.synchronicer.dk"/>

Example response document

<helloSynchronicerResponse status="success" xmlns="http://www.synchronicer.dk">
<responseData helloParm1="First" helloParm2="Second" user="APISDUDV"/>
</helloSynchronicerResponse>

HTTP GET - response: XML

You call these services by using a GET request and provide each request information as a request
parameter. This means you cannot call services that must receive a complex structure using this method;
instead, you have to create a request XML document and call using an HTTP POST request.

The services return an XML document.

In addition to the input for the service, you have to identify which service to call. This is done by adding
the request parameter synchService=[servicename] to your GET request.

These services are provided on the following URLs:

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer/services/apixml
e Production: https://xml.synchronicer.dk/express/site/synchronicer/services/apixml

Page 7 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Response document structure

A W3C XML schema describes the response documents for each service. Schema name for a service is
[servicename].xsd — they are located on the following URLs:

e Test: http://tstxml.synchronicer.dk/express/res/res_synch/Schemas/[servicename].xsd

e Example: http://tstxml.synchronicer.dk/express/res/res synch/Schemas/helloSynchronicer.xsd
e Production: https://xml.synchronicer.dk/express/res/res_synch/Schemas/[servicename].xsd

e Example: https://xml.synchronicer.dk/express/res/res synch/Schemas/helloSynchronicer.xsd

The top element of all response documents has the service name followed by “response”.
The top element contains an attribute: “status”.

If the status value is “success” and the service can return additional information, the top element will
scope a responseData element that contains the service response.

If the status value is not “success”, the top element will scope a message element that can scope a
number of message elements - each describing an error cause.

Find the services that you can call using this method and the request parameters you must provide
below (see the section XML Services):

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer? WSLOAD=SERVICE
e Production: https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE

You cannot call the service using GET if the column describing the request parameters contains the text:
“This service cannot be called using GET requests as it has a complex request structure. *

Example GET request

https://xml.synchronicer.dk/express/site/synchronicer/services/apixml?synchService=helloSynchronic
er&helloParm1=First&helloParm2=Second

Example response document

<helloSynchronicerResponse xmIns="http://www.synchronicer.dk" status="success">
<responseData helloParm1="First" helloParm2="Second" user="APISDUDV"/>
</helloSynchronicerResponse>

HTTP GET - response: JSON

You call these services by using a GET request where you provide each request information as a request
parameter.

The services return a JSON structure: These are provided on the following URLs:

Page 8 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



http://tstxml.synchronicer.dk/express/res/res_synch/Schemas/helloSynchronicer.xsd
https://xml.synchronicer.dk/express/res/res_synch/Schemas/helloSynchronicer.xsd
https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://xml.synchronicer.dk/express/site/synchronicer/services/apixml?synchService=helloSynchronicer&helloParm1=First&helloParm2=Second
https://xml.synchronicer.dk/express/site/synchronicer/services/apixml?synchService=helloSynchronicer&helloParm1=First&helloParm2=Second

Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

e Test: http://tstxml.synchronicer.dk/express/site/synchronicer/services/apijson
e Production: https://xml.synchronicer.dk/express/site/synchronicer/services/apijson

In addition to the input for the service, you have to identify which service to call. This is done by adding
the request parameter synchService=[servicename] to your GET request.

Find below the services that you can call using this method and the request parameters you must
provide (see the section JSON services):

e Test: https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
e Production: https://xml.synchronicer.dk/express/site/synchronicer? WSLOAD=SERVICE

Response document structure

The top element contains a property “status”. If the status value is “success” and the service can return
additional information, then the top object will scope a responseData object containing the service
response.

If the status value is not “success”, then the top object will scope a message object that can scope a
number of message objects — each describing an error cause.

Example GET request

https://xml.synchronicer.dk/express/site/synchronicer/services/apijson?synchService=helloSynchronic
er&helloParm1=First&helloParm2=Second

Example response structure

{"xmlIns":"http://www.synchronicer.dk","responseData":{"helloParm2":"Second","helloParm1":"First","us
er":"APISDUDV"},"status":"success"}

You can disregard the xmins property; it is a technical artifact with no significance.
Common considerations for all service interfaces

Security/authentication when calling Synchronicer services

When calling Synchronicer services, you must always provide a username and a password for a
Synchronicer service user. Synchronicer uses this information to identify the data that should be available
for the service request.

The section ‘Calling Secured Synchronicer Services’ describes the different ways you can provide the
login information for Synchronicer.

Page 9 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



https://tstxml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://xml.synchronicer.dk/express/site/synchronicer?WSLOAD=SERVICE
https://xml.synchronicer.dk/express/site/synchronicer/services/apijson?synchService=helloSynchronicer&helloParm1=First&helloParm2=Second
https://xml.synchronicer.dk/express/site/synchronicer/services/apijson?synchService=helloSynchronicer&helloParm1=First&helloParm2=Second

Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Fair usage/service load
The Synchronicer services provide a very open architecture, which currently does not enforce any
limitations on the frequency or number of service calls you can perform.

However, it is obvious that we cannot handle an unlimited number of requests.
The two scenarios that usually cause problems are:

1. A constant high load of service calls (e.g. if you retrieve information for all your registrations very
often)

2. Ashort-term extreme load (e.g. sending in information about all your tours for the next
month/year in one execution with the request sent simultaneously or nearly so).

In both cases, the load on the system will become a problem and, in worst case, it can even reach a
situation where our infrastructure will handle your calls as a Denial-Of-Service attack.

In most everyday use cases, we do not expect this to be an issue.

However, we have to reserve the right to limit these types of situations — by either enforcing limits to the
overall number of calls; number of calls in a certain time-period; or introducing a priority system with
high load service calls receiving a low priority.

To avoid this issue, we highly recommend contacting Synchronicer support when you start an
integration project. This will enable us to look at the use you want to make of the APl and identify
potential issues.

The helloSynchronicer test service

In order to allow testing in all environments, we provide a test service called ‘helloSynchronicer’. This
service does not update any data, and you do not need to have any information about the data stored in
Synchronicer to call the service.

You can call this as any other service and use it to test the technical implementation of your interface.

The service receives two parameters as input, and returns the same two parameters together with the
identification of the service user used to login to Synchronicer.

If you want to test a simple error situation, do not just specify any values for the two parameters; it will
cause the service to return an error.

Resending requests that update data
This section describes how to handle the following situations:

e You called a Synchronicer service, which updated data and sent the request to the service.
However, before you received a response, the connection was lost.

e You called a Synchronicer service, which updated data, and sent the request to the service. The
processing takes some time and your http client times out.

Page 10 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

In both cases, the state of the data is unknown to you. You simply do not know the result of the update
and for services that create records in Synchronicer, you have not received the response containing the
key of the created record.

In some cases, just resending the request will lead to double data entries. For instance, if you call
createTour, lose the connection and call createTour again with the same data, then you end up having
two tours instead of one.

To allow you to resend without this problem occurring, all Synchronicer requests allow you to add a
unique id to the request - either as an XML attribute; GET request parameter; or JSON property. The id
name is requestld and it can be up to 40 characters long. We recommend using a uuid, as it is an easy way
to ensure uniqueness for your request

If you resend the request, just specify the same id as on the original request, then Synchronicer will not
process the request, it will just respond with the response created for the original request.

Examples

XML request containing a requestid attribute:

<syn:helloSynchronicer helloParm1="First" helloParm2="Second" requestld="72671147-f113-4dce-
922e-a1d8de48ba46” xmins:syn="http://www.synchronicer.dk"/>

GET request for json service:

https://xml.synchronicer.dk/express/site/synchronicer/services/apijson?synchService=helloSynchronic
er&helloParm1=First&helloParm2=Second&requestld=72671147-f113-4dce-922e-a1d8de48ba4d6

Page 11 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

SOAP request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:syn="http://www.synchronicer.dk">

<soapenv:Header/>

<soapenv:Body>

<syn:helloSynchronicer helloParm1="First" helloParm2="Second" requestld="72671147-f113-4dce-

922e-a1d8de48bad6"/>

</soapenv:Body>
</soapenv:Envelope>

To see the effect of using the requestld or not - compare the two following cases:

1. In this case, you do not specify a requestid. The processing of the first request starts, but before
the first byte of the response is returned, the connection is lost, or the client times out. The
processing was still performed, and the database is updated.

The client (you) does not receive a success response and resends the request.
This leads to a second update of the database.

In this case, the connection is not lost and the client receives the response.
In some cases, this will not be a problem, but in others, the “double” update can lead to
problems:

4 Synchronicer )

Client sends request No requestld:

Connection is lost / client times out X Call service record
response

Synchronicer
service that
performs
database
update

Client

Client resends request
No requestld:
Call service record

Synchronicer returns response and return response

Page 12 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

2. Inthe case where the client sends a requestld, the first request will still process, the connection
is lost and the client resends the request.

As the second request contains the same requestid as the first one, the Synchronicer runtime
will not call the service that updates the database. Instead, it will return the response
generated by the first request.

This means that the database is updated only once. Furthermore, if you have changed the data
in the second request, these changes are disregarded. The service is simply not called, which
means that the response will be based on the first request.

é Synchronicer N

I Synchronicer preprocess

Client sends request
requestld = 123 ! Unknown requestld:

Call service record Synchronicer

service that
performs
database

Connection is lost / client times out

response

Client

Client resends request
requestld = 123 Known requestid:
Do not call service

update

return response from
Synchronicer preprocess returns previous call

response from previous request

P N E—

Page 13 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Calling secured Synchronicer services

This section describes the options you have for providing the security information when calling the
Synchronicer services.

In order to call the external services provided by Synchronicer, you need to provide login information for
a special service user.

This will ensure that:

1. Only authorized customers can access data using the services.
2. The authorized customer can only access his own data.

Note that the service user mentioned below is not a normal web user, meaning that you cannot use your
normal web login for authorizing your service access.

Instead, you have to use a service user provided by Synchronicer for this specific purpose.
All Synchronicer services are secured using SSL.

Standard authorization

The standard (and recommended) way to specify the security information is to use the special login
service.

This service issues a token, which you can add as an authorization bearer header on subsequent calls to
services.

Specify user/password as: 4 Synchronicer )
or '

| Login service

Returns XML or JSON document containing
authorization token

Client

POST/GET to secured service
- add HTTP header:

Authorization bearer [TOKEN] Secured Synchronicer

| services

Returns response according to service type

Page 14 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Example login response - XML

<?xml version="1.0" encoding="UTF-8"?>

<loginResponse status="success" xmlns="http://www.synchronicer.dk">
<responseData
accessToken="eyJhbGciOiJIUzI1NiJ9.ey)zdWIiOilzNzI20TA10zQOMzUONTYiLCJ3c3I0eXBlljoiY
WNjZXNzliwiaXNzljoiaHROcDpcLTwvc3luY2hyb25pY2VyLmRrliwiZXhwljoxNTATMzgONjkxLCJ3
c310aWQIiOiJjNTUWNjA5Zi0TMzc1LTQ1YWUtYjUyZS1mZTIINzZEyMTg1YWEILCJpYXQiOjE1MDE
wNjQ20TF9.9ADzTBHaaBbgDO-hioFiDfZfPkrAO5uqJZ-RNjlOto8" tokenExpires="2017-09-
14T12:24:51"/>

</loginResponse>

Example login response - JSON

{"xmlns":"http://www.synchronicer.dk","responseData":{"tokenExpires":"2017-09-
14T11:37:48","accessToken":"eyJhbGciOiJIUzI 1NiJ9.eyJzdWIiOilzZNzI20TA10zQ0OMzUyODgiLCJ3c310eX
BlljoiYWNjZXNzliwiaXNzljoiaHROcDpcL1wvc3luY2hyb25pY2VyLmRrliwiZXhwljoxNTA1MzgxODY4LCJ3
c310aWQiOil4ZWYyNTUONSOXMjJILTQ2ZGEtYjNiMCThMDZINGQwZGQ3YmYiLCJpYXQiOjETMDEwWNjE4
Njh9.6vJ66i2XqLLWNpUHP3FW199i4hPKtWVXbipOlraOKgY"},"status":"success"}

When calling the login service, you can provide the user and password as:

e Basic authentication
e Request parameters
e Authorization attributes in a request XML document

Calling the login service - basic authentication
This is the standard basic authentication as described by the standard: https://tools.ietf.org/html/rfc2617.

Many http clients have native support for this, but if it is not the case for the one you are using; this is a
short description of how to implement it:

Add user name and password to one string separated by a colon, for example: myusername:mypassword
Base64 encode this string resulting in the string: bX/1c2VybmFtZTpteXBhc3N3b3Jk
Add an http request header:

Name: Authorization

Value: Basic bXI1c2VybmFtZTpteXBhc3N3b3Jk

Page 15 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00



https://tools.ietf.org/html/rfc2617

Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Example: POST / XML response

POST /express/site/synchronicer/services/apixml HTTP/1.1
Content-Type: text/xml;charset=UTF-8

Authorization: Basic bXI1c2VybmFtZTpteXBhc3N3b3Jk
Transfer-Encoding: chunked

Host: xml.synchronicer.dk

<?xml version="1.0" encoding="UTF-8"?>
<login xmlns="http://www.synchronicer.dk"/>

Example: GET / XML Response

GET /express/site/synchronicer/services/apixml?SynchService=login HTTP/1.1
Content-Type: text/xml;charset=UTF-8

Authorization: Basic bX11c2VybmFtZTpteXBhc3N3b3Jk

Transfer-Encoding: chunked

Host: xml.synchronicer.dk

Example: GET /JSON response

GET /express/site/synchronicer/services/apijson?SynchService=login HTTP/1.1
Content-Type: text/xml;charset=UTF-8

Authorization: Basic bX11c2VybmFtZTpteXBhc3N3b3Jk

Transfer-Encoding: chunked

Host: xml.synchronicer.dk

Preemptive basic authorization or not?
Synchronicer supports both preemptive basic authentication (where you add the authorization header
on the initial request (this is the method described above) and non-preemptive basic authentication.

When Synchronicer receives a request for a secured endpoint and the request does not contain valid
authorization information, Synchronicer returns http status 401 and a WWW-Authenticate header. The http
client then adds the basic authorization header, if it has the available information, and resends the entire
request including the new header.

Which method you will use normally depends on the http client you are using. If you implement the
authorization yourself, we recommend that you use preemptive basic authentication, as it is much
simpler to implement.

Page 16 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Calling the login service - request parameters
In this case, you simply add the request parameters “user” and “password” to your http request.

For GET requests, this is very simple, just add user=myuser&password=mypassword to the end of your
URL.

For POST requests, note that some http clients do not support the addition of request parameters as part
of the URL. This means that if you for instance send a POST to:

» https//xml.synchronicer.dk/site/synchronicer/services/apixml?user=myuser&password=mypassword

Then the client might not add the user and password parameters to the request.

In these cases, the http clients normally have methods for adding the request parameters. Use these
methods instead.

Example: HTTP GET /JSON response
Full http request:

GET
/express/site/synchronicer/services/apijson?user=myuser&password=mypassword&SynchService=log
in HTTP/1.1

Host: xml.synchronicer.dk

Example HTTP GET / XML response
Full http request:

GET
/express/site/synchronicer/services/apixml?user=myuser&password=mypassword&SynchService=logi
n HTTP/1.1

Host: xml.synchronicer.dk

Calling the login service - authorization attributes
You can add the attributes “user” and “password” to the top element of your XML request document. This
is obviously not relevant when calling services using GET.

Example: XML document

<?xml version="1.0" encoding="UTF-8"?=
<login password="mypassword" user="myuser" xmlns="http:/ /www.synchronicer.dk"/>

Page 17 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

POST /express/site/synchronicer/services/apixml| HTTP/1.1
Content-Type: text/xml;charset=UTF-8
Transfer-Encoding: chunked

Host: xml.synchronicer.dk

<?xml version="1.0" encoding="UTF-8"?>
<login xmlns="http://www.synchronicer.dk" password="mypassword" user="myuser"/>

Example: SOAP

<?xml version="1.0" encoding="UTF-8"?=
<soapenv:Envelope xmins:soapenv="http:f /schemas.xmlsoap.org/soap/envelope/">
<spapenv:Header/>
- =soapenv:Body>
<login password="mypassword" user="myuser" xmins="http:/ /www.synchronicer.dk"/>
< fsoapenv:Body =
=/soapenv:Envelope>

POST /express/site/synchronicer/services/apisoap HTTP/1.1
Content-Type: text/xml;charset=UTF-8

SOAPAction: login

Transfer-Encoding: chunked

Host: xml.synchronicer.dk

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmins:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header/>
<soapenv:Body>
<login xmlns="http://www.synchronicer.dk" password="mypassword"
user="myuser"/>
</soapenv:Body>
</soapenv:Envelope>

Calling a secured service

After obtaining the token, you can use it to call all the secured Synchronicer services. You do this by
adding an http header to each request.

This header has the name: Authorization and the value: Bearer [TOKEN]

Replace [TOKEN] with the token returned by the login service.

Page 18 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

Example request (for the helloSynchronicer service):

POST /express/site/synchronicer/services/apixml| HTTP/1.1

Content-Type: text/xml;charset=UTF-8

Authorization: Bearer
eyJhbGciOiJIUzITNiJ9.eyJzdWIiOilzNzI20TA10zQ0MzQ1MjkiLCJ3c310eXBlljoiYWNjZXNzliwiaXNzljoiaH
ROcDpcL1wvc3luY2hyb25pY2VyLmRrliwiZXhwljoxNTATMzc4MTg1LCJ3c310aWQiOilOMWE3YmUxOCT
kODAzLTQ20TktOWU5MSThZTRIZGNmMNjliMmYiLCJpYXQiOjETMDEWNTgxODV9.bzakDMh3KF2o-
TyhWX-hP9AMwKO2wHyfOjzacpggaGk

Transfer-Encoding: chunked

Host: xml.synchronicer.dk

<?xml version="1.0" encoding="UTF-8"?>
<helloSynchronicer helloParm1="a" helloParm2="b" xmIns="http://www.synchronicer.dk"/>

Alternative method: Calling secured services without the authorization token
We know that some customers only perform few, infrequent and unrelated calls to Synchronicer services.

To make this case easier to implement, it is possible to call each secured service in the same way you call
the login service.

This means that instead of adding the authorization bearer [TOKEN] header to the request when calling
the services, you can use either:

e Basic authentication
e Request parameters
e Authorization attributes in a request XML document

This means that you do not have to obtain and store the access token.

However, there is a certain performance penalty involved, as this means we have to establish the entire
session context for each request, instead of only having to do so for the login request. For this reason,
you should only use these methods for infrequent service calls.

Currently, we have no limit to the number of frequency of service calls you can make using this method.
However, we reserve the right to enforce limitations to this method later on.

Page 19 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Synchronicer

POST/GET to secured service
- specify user/password as:
or
on each request

Secured Synchronicer
services

Client

Returns response according to service type

Page 20 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Synchronicer data model

Synchronicer is a very open system designed to handle a number of very different tasks.

The base mission of Synchronicer is to direct one or more users (often in a vehicle) to a location. When
present at the location, Synchronicer informs them about the task they need to perform. Synchronicer
records some data about the task execution automatically and allows the users to record other
information themselves.

The external interface of Synchronicer allows you to create the information about these tasks and the
tours that typically group them. Furthermore, it allows you to retrieve data about your tasks.

To enable you to do so, the following describes the data model and the names used in the interfaces.

ER diagram for the data model

tour

registrationltem
registrationTable

registration
Tableltem

Registration
For most interactions with Synchronicer, this is the primary entity.
The registration holds information about something that needs to be done on a location. After

Page 21 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

performing the task, the registration will hold all the data registered for the task.
Alternatively, we could have called it “Task”, “Unit of work”, or “Assignment”.

Examples of registration entries include (among many other options):

e Delivering a package to an address

e Retrieving a container at a location

e Fixing something, (e.g. a damaged bench/garbage can)

¢ Inspecting the condition of something (e.g. checking rat trap(s) or the chlorine content of a
swimming pool etc.)

Tour

A tour is a collection of registrations, which are grouped together for some reason. In most cases, the
definition of a tour is ‘a day’s work'.

A tour is assigned to an employee and/or a vehicle; this is how a tour gets operational.

Some customers use tours as a day’s work with daily completion. Other customers use the tour (assigned
to an employee) as a way to assign registrations to a specific employee. In this case, the tour is reused
indefinitely.

Destination
Destination is a physical location. Alternatively, we could have called it “Address”, “Place”, or “Position”.

The destination contains name and address fields. However, the most vital information is the
latitude/longitude of the destination.

A registration has a reference to a destination. In this way, the registration knows the location where the
registration should be carried out. Some customer configurations create a new destination for each
registration — others reuse destinations.

registrationltem

As described above, a registration is a very general term. It can cover a multitude of different tasks and
need for information shown to the person performing the task and the information this person should be
able to record.

Synchronicer makes this possible by allowing each registration type to define a set of name/value pairs
that can be assigned as input or output fields (or both) for the registration.

Each of these names are called registrationitem and the values assigned to each registrationltem are
called a registrationitemValue.

Examples of registrationltems:

e Avregistration directs a user to an address, where the user is to inspect the condition of a
swimming pool.

Page 22 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen frem

The user registers the chlorine content of the pool, which is recorded as a registrationltemValue
(by Synchronicer).
The backend system of the customer can now retrieve this value (using the getRegistration API,
which returns the entire registration including the registration items).

e Aregistration directs a user to an address, where the user needs to deliver a package. If no one
are present at the address, then he is allowed to place the package in the carport.
This information is stored as a registrationltemValue, which will normally be set when the
registration is created (e.g. by the registrationltemSetValue APl being called after the creation of
base registration).

registrationTable

A registrationTable is another way Synchronicer makes it possible to store data that is specificto a
registration type.

RegistrationTables are used to repeat items in rows. Each table can have a collection of
registrationTableltems. In this way, it is possible to store sets of related data for the registration.

Each registrationTableltemValue has a rowld used to identify the rows in the table.
An example of the use and storage of a registrationTables could be:

e Aregistration directs an employee to an address where a number of rat traps has been placed.
When creating the registration, a record is created for each of these traps - the location and type
of trap records is created as two registrationTableltemValues (meaning that the registrationTable
could be seen as the list of traps, which contains a record with three fields for each trap).

When the employee arrives at the location, he has to inspect each trap and record the state of the
trap. This is also recorded as a separate registrationTableltemValue.

Eventually, you would have the following result (after inspection) of a registration with two traps:

RegistrationTable: Traps, RowlD: 1, registrationTableltem: location, value: “Outside main barn
door”

RegistrationTable: Traps, RowID: 1, registrationTableltem: type, value: “Standard”
RegistrationTable: Traps, RowID: 1, registrationTableltem: state, value: “Empty”
RegistrationTable: Traps, RowlD: 2, registrationTableltem: location, value: “Inside main barn
door”

RegistrationTable: Traps, RowID: 2, registrationTableltem: type, value: “Standard”
RegistrationTable: Traps, RowlD: 2, registrationTableltem: state, value: “Rat”

Page 23 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




Synchronicer

SYNCHRONICER AS A SERVICE Veyen, frem

Retrieving the configuration

As the above describes, the configuration of the Synchronicer application determines the
registrationltems and registrationTableltems that you can either set or get using the API. To provide an
easy overview of the configured items, Synchronicer provides a service named getConfiguration. Calling
this service returns a list of the current configurations for your Synchronicer account.

Other concepts
Employee is a person logging into the Job+ client.

Vehicle is the equipment used to drive to the registration.

ReferenceTable is a set of records typically used in a dropdown to select e.g. item master, priority codes,
reason codes — anything where the data can change (otherwise static values would be defined against a
field).

Page 24 of 24

Synchronicer by Soft Design A/S

www.synchronicer.com - info@synchronicer.com - +45 39 66 02 00




	Management summary
	Formats
	Service catalogue
	Authorization
	Data model

	Calling Synchronicer Services
	SOAP services
	SOAPAction
	Request document structure
	Response document structure
	Example request document
	Example response document

	HTTP POST XML – response: XML
	Request document structure
	Response document structure
	Example request document
	Example response document

	HTTP GET – response: XML
	Response document structure
	Example GET request
	Example response document

	HTTP GET – response: JSON
	Response document structure
	Example GET request
	Example response structure

	Common considerations for all service interfaces
	Security/authentication when calling Synchronicer services
	Fair usage/service load
	The helloSynchronicer test service
	Resending requests that update data
	Examples


	Calling secured Synchronicer services
	Standard authorization
	Example login response – XML
	Example login response – JSON
	Calling the login service – basic authentication
	Example: POST / XML response
	Example: GET / XML Response
	Example: GET / JSON response
	Preemptive basic authorization or not?

	Calling the login service – request parameters
	Example: HTTP GET / JSON response
	Example HTTP GET / XML response

	Calling the login service – authorization attributes
	Example: XML document
	Example: SOAP

	Calling a secured service

	Alternative method: Calling secured services without the authorization token

	Synchronicer data model
	ER diagram for the data model
	Registration
	Tour
	Destination
	registrationItem
	registrationTable
	Retrieving the configuration
	Other concepts


